
Internship Report

~ Properties of the KLX number ~

Coda BOUROTTE
coda.bourotte@ens-lyon.fr

Research Advisor:
Shinnosuke SEKI

s.seki@uec.ac.jp

Seki Lab — University of Electro-Communications
Chofu, Tokyo, Japan

1/24

1. Abstract
The KLX number of a graph is a measurement introduced by [1] to describe the set of
graphs that can be build using their method of RNA origami folding. In this internship I
analysed different aspects of the KLX number: bounds, counter-examples, NP-Hardness,
algorithms etc. I analyzed the relationships between the KLX number of a graph and the
treewidth, degree, and cutwidth. I will prove that the Tree-Width is a lower-bound for
the KLX number, and that the cutwidth provides a lower bound on the product of the
KLX number and the graph’s degree. I will show that computing the KLX number is NP-
hard, even when restricted to the class of graphs that are planar, bridgeless, bipartite and
of degree ≤ 5. Finally, we show that determining whether the KLX number of a graph is
less than a fixed constant is MSO2-expressible, which implies the existence of a linear-
time algorithm for graphs of bounded treewidth. This was done using a new trick to store
a finite list of neighbours for every vertex of a graph in MSO2 as a labeling of the edges

and vertices.

Contents
1. Abstract . 2

2. Introduction . 3
2.1. Motivation . 3
2.2. Results . 4

3. Definitions . 5
3.1. General Graph Theory Definitions . 5
3.2. Tree-width . 6
3.3. MSO2 . 6
3.4. KLX . 8

4. General Properties of the KLX numbers . 10
4.1. Useful Lemmas . 10
4.2. Characterizations of graphs of KLX=0 and KLX=1 . 12
4.3. Counter-Examples of conjectures . 13

5. Upper and lower bounds . 15
5.1. TW(𝐺) ≤ KLX(𝐺) + 1 . 15
5.2. CW(𝐺) ≤ KLX(𝐺)Δ(𝐺) . 15
5.3. KLX(𝐺) ≤ number of touching cycles . 16
5.4. Number of disjoint cycles ≤ KLX(𝐺) . 16

6. NP Hardness . 16

7. Courcelle’s theorem for KLX . 18
7.1. DFS(T,G) is MSO2-expressible . 18
7.2. KLX𝑘 is MSO2 expressible and Courcelle’s theorem . 19

8. Conclusions . 19
8.1. The work environment . 19

Bibliography . 20

9. Annexes . 21
9.1. KLX≤𝑖 is MSO2-expressible . 21

2/24

2. Introduction
2.1. Motivation
In the field of DNA nanotechnology, researchers are interested in finding means to fold RNA molecules
into a predefined shapes (wireframe) [2]. This can be used to create self-assembling biostructure in vitro,
and even potentially in vivo.

DNA and RNA DNA (deoxyribonucleic acid) is a double-stranded structure, meaning that it consists of
a series of pairs of bases. There are four kinds of base, and Adenine (A) is paired with Thymine (T), while
Cytosine (C) is paired with Guanine (G). RNA (ribonucleic acid), on the other hand, is a single-stranded
structure that replaces Thymine with Uracil (U). It is obtained by co-transcription: one strand of the DNA
double helix is ‘copied’ by an enzyme into a single RNA strand.

RNA folding RNA is very unstable and will fold itself in a way that minimizes its energy. It will try to
fold in a way that pairs A with U and C with G1. This process can be utilized to force the folding to create
a particular shape. To that extend, [2] introduced a method for creating a DNA molecule that will fold its
corresponding RNA strand into a targeted wireframe. The idea is to explore a spanning tree of the graph,
writing one strand when going to a child vertex, and writing the second paired strand when coming back
to the parent, to make a very rigid and strong two-strand structure for RNA. For all additional edges not
in the spanning tree, it will create two half-edges called kissing loops that will bind together once both are
visited (See Figure 1). Once closed, however, they will bind strongly and will not open again, allowing us
to use the pair of half-edges again.

Figure 1: The method described by [2].
From left to right: the target graph, the spanning tree,

spanning tree with the half-edges, and the RNA final molecule2

Constraints Two constraints come from this construction, solved by [1]:

• The first is polymerase trapping, identified by [3] and studied by [4]. Once the two half-edges bind and
close, the RNA breaks if it tries to complete a strand from the newly formed cycle. This is caused by the
fact that RNA’s double strands have a slight rotation, and therefore requires the enzyme to rotate around
the pre-existing single strand. This rotation will be blocked by the cycle as the size of the enzyme and
the DNA it reads is very large compared to the RNA that has been written.
To solve this issue, [1] proposed to close every cycle by a kissing loop. This means that for every cycle,
the last time we see a node from the cycle correspond exactly to the last time we visit the edge not in the
tree. This is achieved iff the tree is a DFS tree [1], as, in a DFS tree, all edges not in the tree are ‘backward
edges’ from a child to a grandparent, and they are the ones that ‘close’ the cycles.

• The second is that the number of half-edges that can be present simultaneously is limited and finite
(currently limited to 6, but it might grow in the future). We will formally define the KLX number of
a graph as the minimal number of types of half-edges necessary to create a specific graph using this
corrected method.

Tree-depth A second parameters on graphs simmilar to the KLX was also considered by [1], the tree-
depth (TD), to model another restriction on the number of single-strand tree edges at any given time. This
restriction means that the DFS tree must be also bounded in height. Since this is an already a well-established

1Some other binds may occur but are weaker
2Image by Pekka Orponen & [2] (CC BY 4.0)

3/24

measurement of a graph that is also less restictive as the curretn state-of-the-art bound is bigger than the
KLX one, I did not particularly study the Tree-Depth. For more information, the reader might be interested
in [5].

2.2. Results
Established results When I started my internship, not a lot was known abut the KLX number. [1]
defined and proved that computing the KLX-number of a graph was NP-Hard. An exact enumeration-based
algorithm was described to compute the KLX number in any graph. The paper also described a few open
questions, most notably3:
• Efficient combinatorial algorithms for minimising the KLX and TD numbers in some interesting classes

of graphs, such as 3-regular and polyhedral graphs, or proving the problems remains NP-hard even in
these classes.

• Efficient fixed-parameter or approximation algorithms for minimising the KLX and TD numbers in some
relevant classes of graphs.

Informally, a conjecture was shared with me: “if a hamiltonian path exists, then the DFS of best KLX number
is a hamiltonian path”.

My results Both open questions and the conjecture got answered by my work. Here are my main results:
• The Tree-Width + 1 is a lower bound of the KLX number
• The Cut-Width is a lower bound to the product of the KLX number with the degree of the graph
• The 2 × 8 rectangular grid with every even vertical edge removed is a counter example to the conjecture
• Computing the KLX number in the class of planar bipartite 4-regular graph is NP-Hard, and similarly for

planar bipartite 5-regular bridgless graphs
• For every 𝑘, there is a MSO2 formula to test if a graph have a KLX number less or equal to 𝑘. This, by

Courcelle’s theorem, gives a fixed-parameter-tracable algorithm to for the class of graph of bounded tree-
width (aka a linear-time algorithm with a huge constant depending on the KLX number and tree-width)

Some counter-intuitive properties was also found, like how adding an edge to the graph can divide by up
to 2 the KLX number, allowing for counter-example to conjectures I came up with. Unfortunatly, no upper-
bound (other than trival ones like the number of edges) was found.

Publication It is planned for thoses results to be published into a theoretical computer science journal /
algorithmistic one before the end of 2025. We aim at STACS, but might fall back into a less elitist one.
During my internship I researched other things that will not be mentionned in this document, but some
might lead to publications later this year / next year too. Thoses include:
• Generating RNA langages using circular DNA and optimising for the length of the cycle and number of

cropped contextes
• Analyzing the topology of the histogram relation on finite arrays

3Thoses have been copied from the article

4/24

3. Definitions
In this section I will introduce the different formal definitions that I will use during the rest of the report.
We will start with some formal graph theory definitions, introducing the tree-width as a formal concept,
informally describe the MSO2 logic with examples and explain an import link it has with tree-width, before
introducing the formal definition of the KLX number and give some examples.

3.1. General Graph Theory Definitions
General We note |𝑋| the cardinal of 𝑋. We note 𝐴 ⊔ 𝐵 the disjoint union of 𝐴 and 𝐵. We note 𝐴𝐵 the
set of function from 𝐵 to 𝐴. We note 𝐴(ℕ) the set of finite sequences (𝑎𝑖)𝑖≤𝑛 in 𝐴. For (𝑢𝑖)𝑖 ∈ 𝐴(ℕ) a finite
sequence, we note |(𝑢𝑖)𝑖| its length. Given two sequence 𝑎, 𝑏 ∈ 𝐴(ℕ), we note 𝑎 ‖ 𝑏 the concatenation of 𝑎
and 𝑏. We note 𝒫(𝑋) the power set of 𝑋 and 𝒫𝑘(𝑋) the set of all powerset of 𝑋 of cardinal 𝑘. For 𝑘 ≤ |𝑋|,
𝑆 ⊆

𝑘
𝑋 means that 𝑆 ⊆ 𝑋 ∧ |𝑆| ≤ 𝑘. For 𝑘 ∈ ℕ, note [𝑘] = {1, 2, 3, .., 𝑘}. All definition will be indicated

using italics in this document like this.

Graphs Given a graph 𝐺, we note 𝑉𝐺 and 𝐸𝐺 its set of vertices/edges. We note deg𝐸𝐺
𝑣 the degree of 𝑣 ∈

𝑉𝐺 in the graph (𝑉𝐺, 𝐸𝐺), and we’ll denote by Δ(𝐺) = max𝑣∈𝑉𝐺
deg 𝑣. We denote as 𝐺[𝑆] for 𝑆 ⊆ 𝑉𝐺 the

subgraph 𝐺′ ≔ (𝑆, 𝐸𝐺 ∩ 𝑆2). If 𝑆 ⊆ 𝐸𝐺 instead, then 𝐺[𝑆] ≔ (𝑉 ′, 𝑆) with 𝑉 ′ the covered vertexes of
𝑆 (formally, 𝑉 ′ = {𝑥 ∈ 𝑉𝐺 | ∃𝑦, (𝑥, 𝑦) ∈ 𝑆}). For 𝑣 ∈ 𝑉𝐺 (resp. 𝑒 ∈ 𝐸𝐺), we note 𝐺 − 𝑣 for 𝐺[𝑉𝐺 \ {𝑣}]
(respc. 𝐺 − 𝑒 for 𝐺[𝐸𝐺 \ {𝑒}]). For 𝐴 = {𝑒1, …, 𝑒𝑛} ⊆ 𝐸 (or a subgraph of 𝐺 composed of the edges 𝐴),
we can note 𝐺 − 𝐴 the graph 𝐺 − 𝑒1 − 𝑒2… − 𝑒𝑛. For 𝑘 ∈ ℕ, we denote by 𝐾𝑘 the complete graph of 𝑘
vertexes and for all 𝑎, 𝑏, ∈ ℕ, we denote by 𝐾𝑎,𝑏 the complete bipartite graph with two set of vertices of
size 𝑎 and 𝑏. A loop is a cycle of length 1. For 𝑘 > 2, we denote 𝐶𝑘 the cycle of length 𝑘. A simple graph is
a connected, undirected, loop-free graph.

Connectedness A graph is 𝑘-connected if for all 𝑆 ⊆
𝑘−1

𝑉𝐺, 𝐺[𝑉𝐺 \ 𝑆] is connected, meaning that removing

𝑘 − 1 vertexes cannot split the graph into multiple connected component. A node is said to be 1-connected
if removing it doesn’t augment the number of connected components. A graph is said to be bridgeless if
there doesn’t exists an edge 𝑒 ∈ 𝐸𝐺 such than 𝐺 − 𝑒 have more connected component than 𝐺.

Remark If a graph is 2-connected, then it is bridgeless: Otherwise, suppose there exists 𝑒 = {𝑥, 𝑦} such
than 𝐺 − 𝑒 split the graph, then 𝐺 − 𝑥 splits it too as 𝐺 − 𝑥 is a subgraph of 𝐺 − 𝑒.

Trees and orderings A tree is an acyclic connected subgraph, and the tree 𝑇 is said to be a spanning tree
of 𝐺 if 𝑉𝑇 = 𝑉𝐺. If a tree 𝑇 is rooted on 𝑟 ∈ 𝑉𝐺, for 𝑣 ∈ 𝑉𝐺, we denote by 𝑇 (𝑣) the subtree of 𝑣 in T (now
rooted in 𝑣). An ordering is of 𝑉𝐺 is an bijective sequence of vertexes 𝜑 : 𝑉𝐺 ⟶ ⟦𝑉𝐺⟧, with the ordering
defined be such that for 𝑥, 𝑦 ∈ 𝑉𝐺 we have 𝑥 < 𝑦 ⇔ 𝜑(𝑥) < 𝜑(𝑦). 𝜑 can be seen as a sequence of vertexes
⟨𝑣1, 𝑣2, …, 𝑣𝑛⟩, and we will often denote the 𝑖-th vertex 𝜑−1(𝑖) as 𝑣𝑖.

Walks We define a walk over 𝐺 to be a finite sequence ⟨𝑣𝑖⟩1<𝑖≤𝑛 ∈ 𝑉 (ℕ)
𝐺 of vertexes such that ∀𝑖 <

𝑛, (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸𝐺. A path is an injective walk (we dont pass twice on the same vertex). A close path (respc.
walk) ⟨𝑣𝑖⟩𝑖≤𝑛 of 𝐺 is a path (respc. walk) such that (𝑣𝑛, 𝑣1) ∈ 𝐸𝐺. We define a cycle to be an alias for a
close path. If an edge 𝑒 is apart of a walk 𝑣, we denote that "𝑒 ∈ 𝑣". We will sometime consider a cycle to
be the set of edges it contains.

DFS Given a simple graph 𝐺 = (𝑉 , 𝐸), we say that 𝑇 is a DFS (Depth First Search) spanning-tree of 𝐺 (or
Trémaux Tree) if it is a tree that can be obtained by visiting the graph 𝐺 using a DFS algorithm. DFS trees
are guarantied to only have backward edges, meaning that all edges not covered by the tree are always in
between a vertex and one of its grand-child. A DFS walk is a sequence ⟨𝑣1, 𝑣2, …, 𝑣𝑛⟩ obtained by the order
of visits of vertexes during a DFS algorithm, including when we backtrack to a vertex.

5/24

1 2
3

4
Figure 2: An example graph with 4 DFS starting from vertex 2

Example The possible DFS walks of the example graph Figure 2 starting at node 2 are

⟨2, 1, 2, 3, 4, 3, 2⟩; ⟨2, 1, 2, 4, 3, 4, 2⟩; ⟨2, 3, 4, 3, 2, 1, 2⟩; ⟨2, 4, 3, 4, 2, 1, 2⟩

3.2. Tree-width
Tree-Width Given a graph 𝐺 = (𝑉𝐺, 𝐸𝐺), we define a tree-decomposition of 𝐺 as a labeled tree 𝑇 =
(𝑉𝑇 , 𝐸𝑇) with such that (the vertex of 𝑉𝑇 are called bags):
• Every bag 𝐵 ∈ 𝑉𝑇 is a subset of 𝑉𝐺
• For all edges {𝑎, 𝑏} ∈ 𝐸𝐺, there exists 𝐵 ∈ 𝑉𝑇 such that 𝑎, 𝑏 ∈ 𝐵
• For all vertex 𝑣 ∈ 𝑉𝐺, all bags containing 𝑣 is a connected subtree of 𝑇 . Formally, 𝑇 [{𝐵 ∈ 𝑉𝑇 : 𝑣 ∈ 𝐵}]

is connected.

The width of a tree decomposition 𝑇 is max𝐵∈𝑉𝑇
Card(𝐵) − 1. We define the tree-width of 𝐺 (denoted by

TW(𝐺)) as the smallest width of a tree-decomposition of 𝐺.

Intuition Tree width represent intuitively “how close to a forest” a graph is. A forest have tree-width 1, a
𝑛 × 𝑛 grid have tree-width 𝑛 and 𝐾𝑛 have tree-width 𝑛 − 1. A lot of very strong results have been found
around tree-width, the one we will be using being Courcelle’s theorem [6], stating that if a property on
graph can be written in a specific logic (that is MSO2), then it is decidable on any familly of graphs of
bounded tree-width in polynomial time in the graph.

Remark Property 3 is equivalent to the fact that for all 𝑢 ∈ 𝑉𝐺, if 𝑢 ∈ 𝐵1 ∩ 𝐵2 two bags, then for all 𝐵′ in
the path from 𝐵1 to 𝐵2 we have 𝑢 ∈ 𝐵′.

Path-Width The definition of the Path-Width is the same as for the tree-width, expect that all trees
considered must be paths. We will note the path-width of 𝐺 as PW(𝐺). From this definition, it immediatly
comes that TW(𝐺) ≤ PW(𝐺), because every path is a tree.

Remark As the instar of the preceding remark about the tree width, havign a tree width ≤ 𝑡 is equivalent
for path-width to finding a sequence of set 𝐵𝑖≤𝑛 of cardinal ≤ 𝑡 covering the edges and vertexes such than
for all 𝑖 ≤ 𝑘 ≤ 𝑗, we have 𝐵𝑘 ⊆ 𝐵𝑖 ∩ 𝐵𝑗.

Cut-Width Given a graph 𝐺 = (𝑉𝐺, 𝐸𝐺) and an ordering of the vertex ⟨𝑣1, .., 𝑣𝑛⟩, the cutwidth of the
ordering (somtimes called the folding number) is the maximal number of edges overlaping at the same
time for the given order. Formally, it’s max1≤𝑘<𝑛 Card({(𝑣𝑖, 𝑣𝑗) ∈ 𝐸𝐺 | 𝑖 ≤ 𝑘 < 𝑗}). The cutwidth of the
graph is the minimal cutwidth of an ordering.

Prop [7] Some inequalities about cut-width, path-width, tree-width and the degree of a graph include:
• TW ≤ CW
• PW ≤ (TW + 1) × CW
• 𝑇 a tree-decomposition of 𝐺 of minimal Tree-Width, we have PW(𝐺) ≤ (TW(𝐺) + 1) × Δ(𝐺) ×

CW(𝑇)

3.3. MSO2
Only an introduction will be made about MSO, and some formalism will be put under the rug intentionally.
For more extended and detailed understanding, especially on the matter of links with langage theory, refer
to [8].

6/24

The goal of MSO2 is to express properties about graphs4 as logical formulas. To that extend, one may
quantify over vertices, over edges, and test if two vertices make an edge. We fix a set of variables 𝑉 =
{𝑥, 𝑦, 𝑎, 𝑥′, 𝛼2, …} and a set of big variables 𝑉 = {𝑋, 𝑈1, Γ, 𝑇 , …} (also called set-variables).

Formulas The langages of logical formulas in MSO2 are build from the follwing blocks :
• Quantifying over elements: for all 𝜓 ∈ MSO2 and 𝑥 ∈ 𝑉 , we have "∀𝑥, 𝜓", "∃𝑥, 𝜓" ∈ MSO2
• Quantifying over sets of elements: for all 𝜓 ∈ MSO2 and 𝑋 ∈ 𝑉 , we have "∀𝑋, 𝜓", "∃𝑋, 𝜓" ∈ MSO2
• Equality of elements: for all 𝑥, 𝑦 ∈ 𝑉 , we have "𝑥 = 𝑦" ∈ MSO2
• Propositional operators: for 𝜓, 𝜑 ∈ MSO2, we have "𝜓 ∧ 𝜑", "𝜓 ∨ 𝜑", "¬𝜓", "𝜓 → 𝜑", "𝜓 ↔ 𝜑" ∈ MSO2
• Testing if an element is a vertex or edge: for 𝑥 ∈ 𝑉 , we have "IsVertex(𝑥)" ∈ MSO2
• Testing if an element is the edge described by two others: for 𝑒, 𝑢, 𝑣 ∈ 𝑉 , we have "𝑒 = {𝑢, 𝑣}" ∈ MSO2

A very important notion here is how quantifiers are over sets of both vertices AND edges.

A lot of notations can be introduced:
• Subset: "𝑋 ⊆ 𝑌 " to denote ∀𝑥, 𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑌
• Forall: "∀𝑥 ∈ 𝑉 , 𝜓" to denote ∀𝑥, IsVertex(𝑥) → 𝜓, (similarly for a set variable)
• Exists: "∃𝑋 ⊆ 𝐸, 𝜓" to denote ∃𝑋, (∀𝑥 ∈ 𝑋, ¬ IsVertex(𝑥)) ∧ 𝜓 (similarly for a regular variable)
• Edges: "{𝑥, 𝑦} ∈ 𝐸" to denote ∃𝑒 ∈ 𝐸, 𝑒 = {𝑥, 𝑦}
• And others, that I trust the reader will be able to transform into a MSO2 formulas if necessary.

Satifability Given a formula 𝜑 ∈ MSO2, we can define the set of graphs that satisfies 𝜑. If 𝐺 satisfies 𝜑,
we note it 𝐺 ⊨ 𝜑, and we say that 𝜑 recognise 𝐺. We left this definition as an informal one, but we will
give examples.

Example 1: Complete Graphs A simple expression recognizing complete graphs would be

COMP ≔ ∀𝑥 ∈ 𝑉 , ∀𝑦 ∈ 𝑉 , 𝑥 ≠ 𝑦 → {𝑥, 𝑦} ∈ 𝐸

It means that “for all pair of two nodes 𝑥, 𝑦, if 𝑥 is different to 𝑦, then there is an edge from 𝑥 to 𝑦”.

Example 2: k-colorable graphs For every fixed 𝑘 ∈ ℕ∗, we can express the fact that a graph is 𝑘-colorable
as a MSO formula. The idea is to put all vertices of the same color in a set (bag), and then make sure that
the sets respect 3 propreties :
• P1: All vertices are in a bag
• P2: Not vertices is in two bags
• P3: There is no edges that have both endpoint in the same bag

P1 and P2 ensure that the bags forms a partitons of the verticices, while P3 ensure that a bag can correspond
to a color with no issues. This gives the resulting formula:

COLOR𝑘 ≔ ∃𝑋1, …, ∃𝑋𝑘, (∀𝑥 ∈ 𝑉 , ⋁
𝑖≤𝑘

𝑥 ∈ 𝑋𝑖) ∧

(∀𝑥 ∈ 𝑉 , ⋀
𝑖<𝑗≤𝑘

¬(𝑥 ∈ 𝑋𝑖 ∧ 𝑥 ∈ 𝑋𝑗)) ∧

(∀{𝑥, 𝑦} ∈ 𝐸, ⋀
𝑖≤𝑘

¬(𝑥 ∈ 𝑋𝑖 ∧ 𝑦 ∈ 𝑋𝑖))

Example 3: Paths We can describe the fact that a set of both vertices AND edges 𝑋 is a path from 𝑢 to
𝑣 as the fact that for every edge in 𝑋 both of its endpoint are in 𝑋, and every vertex other than 𝑢, 𝑣 in 𝑋
only have two edges in 𝑋:

4or any structure, but we will focus here on the graph case

7/24

IsPath(𝑋, 𝑢, 𝑣) ≔ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ∧
(∀𝑒 ∈ 𝑋 ∩ 𝐸, ∃𝑢, 𝑣 ∈ 𝑋, 𝑒 = {𝑢, 𝑣}) ∧
(∀𝑥 ∈ 𝑋 ∩ 𝑉 \ {𝑢, 𝑣}, → ∃𝑒1, 𝑒2 ∈ 𝑋 ∩ 𝐸, IsEndpoint(𝑥, 𝑒1) ∧ IsEndpoint(𝑥, 𝑒2) ∧ [

∀𝑒′ ∈ 𝑋 ∩ 𝐸, 𝑒′ ≠ 𝑒1 ∧ 𝑒′ ≠ 𝑒2 → ¬ IsEndpoint(𝑥, 𝑒′)
])

with IsEndpoint(𝑥, 𝑒) ≔ ∃𝑦, 𝑒 = {𝑥, 𝑦}. We need to have a set containing edges as a vertex might have
more than one neighbour in the path (but only one will be the “next” vertex).

Example 4: Trees An expression recognizing that only a single path exists between two nodes 𝑢, 𝑣 can be:

SinglePath(𝑢, 𝑣) ≔ ∃𝑋, IsPath(𝑋, 𝑢, 𝑣) ∧ (∀𝑋′, IsPath(𝑋′, 𝑢, 𝑣) → 𝑋 = 𝑋′)

From that, an expression to recognise if a graph 𝐺 is a tree could be:

TREE ≔ ∀𝑢, 𝑣 ∈ 𝑉 , SinglePath(𝑢, 𝑣)

Courcelle’s Theorem For every 𝑘 ∈ ℕ and formula 𝜑 ∈ MSO2, there is a linear time algorithm 𝒜 that, for
all graph 𝐺 of tree-width ≤ 𝑘, test if 𝐺 ⊨ 𝜑. This complexity hide a huge constant that is hyper-exponential
in 𝑘 and the number of alternating quantifiers in 𝜑. This have been proven by Courcelle in [6].

Other results include that testing if a formula have a satifying graph 𝐺 of tree-width less than 𝑘 is decidable,
and this implies that testing if a formula is a tautology over graph of bounded tree-width is also decidable [6].

MSO1 is the same logic as MSO2 but only restricted to a quantification over vertices. Some formulas
(like the existence of a hamiltonian path) are only possible in MSO2. Other examples include testing the
existence of a perfect matching or testing the existence of a spanning tree with maximal degree 3 [8]. We
will not study MSO1 here.

3.4. KLX
For ⟨𝑣1, 𝑣2, …, 𝑣|𝑣|⟩ a DFS walk and 𝑥, 𝑦 ∈ 𝑉 some vertexes, we note ⌊𝑥⌋ = min{𝑖 : 0 < 𝑖 ≤ |𝑣| : 𝑣𝑖 = 𝑥}
the first occurrence of 𝑥 in the sequence 𝑣 and ⌊𝑥⌋≥𝑛 = min{𝑖 : 𝑛 ≤ 𝑖 ≤ |𝑣| : 𝑣𝑖 = 𝑥} the first occurrence
of 𝑥 after 𝑛 in the sequence. Similarly, ⌈𝑥⌉ = max{𝑖 : 0 < 𝑖 ≤ |𝑣| : 𝑣𝑖 = 𝑥} and ⌈𝑥⌉≤𝑛 = max{𝑖 : 0 < 𝑖 ≤
𝑛 : 𝑣𝑖 = 𝑥}

A backward edge {𝑢, 𝑣} is open at time 𝑡 if ⌈𝑢⌉ ≤ 𝑡 < ⌊𝑣⌋≥⌈𝑢⌉. In that case, a node (here it is 𝑢) has already
finished to be visited while a node (here, 𝑣) will be visited later. For a backward edge 𝑒 = {𝑢, 𝑣}, we note
𝑒st the node that will be completely visited first and 𝑒nd the node that have yet to be fully visited. The set
of open edges at time 𝑡 for the walk 𝑣 will be denoted 𝒪𝑣

𝑡 = {𝑒 ∈ 𝐸𝐺 \ 𝐸𝑇 | 𝑒 is open at 𝑡 in 𝑣}. We will
omit 𝑣 from the notation if it’s clear from the context. The KLX number of a DFS walk 𝑣 is then noted
KLX(𝐺, 𝑣) and is defined as the maximal number of same-time open edges, that is max0<𝑡≤ |𝑣| Card(𝒪𝑣

𝑡)

The KLX number of a graph, noted KLX(𝐺), is the minimal KLX number of a DFS walk. For a root 𝑟 ∈ 𝑉𝐺,
we note KLX(𝐺, 𝑟) the minimal KLX-number of a DFS walk that start at 𝑟. We therefore have KLX(𝐺) =
min𝑣∈𝑉𝐺

KLX(𝐺, 𝑣)

Remarks A few remarks:
1. The KLX is invariant up to ismorphisms, meaning that we can consider the set of DFS walks up to

isomorphisms. Therefore, for vertex-transitive graphs (i.e. graphs for which for all pairs of vertex 𝑥, 𝑦,
there exists an isomorphism of G that maps 𝑥 to 𝑦), we have that ∀𝑟, KLX(𝐺) = KLX(𝐺, 𝑟).

2. Because we consider a DFS tree, every edge of the tree is taken at most twice: once in a way and once
when comming back. Given an edge 𝑒 = {𝑥, 𝑦} of the DFS tree, let 𝑡 be the moment when we do the
transition 𝑥 → 𝑦 for the second time (when coming back). We then define 𝒪𝑒 as 𝒪𝑡.

8/24

Example 1: Cycle In a cycle, all DFS paths yield the same hamiltonian path (up to isomorphism). For 𝐶𝑘,
the DFS might be : ⟨1, 2, …, 𝑘 − 1, 𝑘, 𝑘 − 1, …, 1⟩, yielding us a KLX of 1, as the edge (𝑘 − 1, 1) is the only
open one from time 𝑡 = 𝑘 to 2𝑘 − 1

Example 2: Cube The 3D cube has two distinct DFS trees: one is a path, and the other has a split (see
Figure 3). Note that there are 3 DFS walks as the order for the split matter: since a vertex has two children,
going to one first then the other may change the KLX number.

1

2 3

4

5

6 7

8

DFS: ⟨1, 2, 3, 4, 8, 7, 6, 5, 6, 7, 8, 4, 3, 2, 1⟩

1

2 3

4

5

6 7

8

DFS: ⟨1, 2, 3, 7, 8, 5, 6, 5, 8, 4, 8, 7, 3, 2, 1⟩ and
⟨1, 2, 3, 7, 8, 4, 8, 5, 6, 5, 8, 7, 3, 2, 1⟩

Figure 3: The two DFS (in red) of the cube, up to isomorphism, and their associated DFS tree.
For the second one, the split occurs on node 8, and the two DFS show this.

The KLX number of the path is 4: during the transition from 7 to 8, we have the edges 𝒪{7,8} ≔
{(5, 1), (5, 8), (6, 2), (7, 3)} that are open (and it’s the maximal). The KLX number of the splitted DFS
is 5 in both cases: during the transition from 8 to 7 (the second time), we have the edges 𝒪{7,8} ≔
{(6, 2), (6, 7), (5, 1), (4, 1), (4, 3)} that are open (and it’s the maximal).

Example 3: This example is to show that the order matter of the KLX matter. Consider the following graph:

L M R

U

D

We will show that the same DFS tree can have two KLX number depending on the ordering. Consider the
following tree starting from U (backward edges are dotted):

L M R

U

D

Two possible DFS walks are possible (in underbrace is the moment where every dotted backward edge
is open):
• For walk ⟨𝑈, 𝑀, 𝐷, 𝑅, 𝐷, 𝑀⏟

{𝑅,𝑀}

, 𝐿, 𝑀, 𝑈⏟
{𝐿,𝑈}

⟩, the KLX is 1

• For walk ⟨𝑈, 𝑀, 𝐿, 𝑀, 𝐷, 𝑅, 𝐷, 𝑀⏟
{𝑅,𝑀}

, 𝑈

⏟⏟⏟⏟⏟⏟⏟⏟⏟
{𝐿,𝑈}

⟩, the KLX is 2

Example 4: Complete graph We compute the KLX of 𝐾𝑘 to be ⌊𝑘
2⌋⌈𝑘

2⌉: let 𝑣 be a DFS walk. Then it is
a path, and since all paths are ismorphic in 𝐾𝑘, we will just compute the KLX number of a path in 𝐾𝑘.
Denote 𝑣 = ⟨𝑣1, …, 𝑣𝑘−1, 𝑣𝑘, 𝑣𝑘−1, …, 𝑣1⟩ the DFS walk.
• For 1 ≤ 𝑡 < 𝑘, we have 𝒪𝑡 = ∅ as we have yet to see a vertex for the last time.
• For 𝑘 ≤ 𝑡 < 2𝑘 − 1, we have 𝒪𝑡 = {(𝑖, 𝑗) ∈ [𝑘]2, 𝑖 ≤ 𝑡 < 𝑗}, with |𝒪𝑡| = (𝑡 − 𝑘 + 1)(2𝑘 − 1 − 𝑡)

9/24

The maximum is reach in the middle, when 𝑡 = 𝑘 + ⌊𝑘
2⌋, with a value of ⌊𝑘

2⌋⌈𝑘
2⌉; therefore KLX(𝐾𝑘) =

⌊𝑘
2⌋⌈𝑘

2⌉

Easy bound We have that KLX(𝐺) ≤ |𝐸𝐺| − |𝑉𝐺| + 1

Proof The number of open edges at the same time cannot exceed the number of backward edges, and this
number is the number of edges minus the number of edges in a DFS tree. □

4. General Properties of the KLX numbers
This section we will introduce :
• 3 useful lemmas of my creation: “1-connected Lemma”, the “Cycle lemma” and the “Path lemma”
• A characterisation fo graphs of KLX = 0 and KLX = 1 using cycles
• Some counter-examples of conjectures that were thought to be true.

All the results here are of my creation.

4.1. Useful Lemmas
Thoses lemmas will be useful for the proofs that will follow, and help to build an intuition on how the KLX
number can grow.

Prop (The “1-connected Lemma”) Let 𝐺 be a connected graph and 𝑥 be a not 1-connected vertex (i.e.
removing it increases the number of connected components, it is an articulation point). Denote 𝐵1 the
connected component of 𝐺 − 𝑥 with the biggest KLX(𝐺[𝐵∗ ∪ {𝑥}], 𝑥) and 𝐵2 the second largest. Then,
we have

KLX(𝐺[𝐵1 ∪ {𝑥}], 𝑥) ≥ KLX(𝐺) ≥ KLX(𝐺[𝐵2 ∪ {𝑥}], 𝑥)

Intuition If we start our DFS in 𝐵𝑖, then when we arrive on 𝑥, we will have to do KLX(𝐵𝑗 ∪ {𝑥}, 𝑥) for
every 𝑗 ≠ 𝑖. So only the “worse” component (𝐵1) may be improved by starting inside it. In a way, 𝑥 “split”
the DFS walk into a series of independant DFS walks.

Proof

• KLX(𝐺[𝐵1 ∪ {𝑥}], 𝑥) ≥ KLX(𝐺) We show that there is a DFS walk of 𝐺 with KLX = KLX(𝐵∗ ∪
{𝑥}, 𝑥). Note 𝐵1, .., 𝐵𝑛 the different connected component of 𝐺 − 𝑥. For every one, let ⟨𝑣(𝑖)

𝑗 ⟩𝑗≤ |𝑣(𝑖)| be
a KLX walk of minimal KLX(𝐺[𝐵𝑖 ∪ {𝑥}], 𝑥). Consider the concatenation of all walks splitted by 𝑥 as
follows:

𝑣 = ⟨𝑥, 𝑣(1)
1 , 𝑣(1)

2 , …, 𝑣(1)
|𝑣(1)|, 𝑥, 𝑣(2)

1 , 𝑣(2)
2 , …, 𝑣(2)

|𝑣(2)|, 𝑥, …, 𝑥⟩

Then for all 1 ≤ 𝑡 < |𝑣|, if 𝑣𝑡 = 𝑣(𝑖)
𝑗 , we have 𝒪𝑣

𝑡 = 𝒪𝑣(𝑖)

𝑗 , as once a connected compoennt have been fully
visited, no open edge exist as the connected compoent is only connected to 𝑥. If 𝑣𝑡 = 𝑥, then 𝒪𝑣

𝑡 = ∅.
Therefore

max
1≤𝑡< |𝑣|

|𝒪𝑣
𝑡 | = max

1≤𝑖≤𝑛
max

1≤𝑗< |𝑣(𝑖)|
|𝒪𝑣(𝑖)

𝑗 | = max
1≤𝑖≤𝑛

KLX(𝐺[𝐵𝑖 ∪ {𝑥}], 𝑥) = KLX(𝐺[𝐵1 ∪ {𝑥}], 𝑥)

And so KLX(𝐺) ≤ KLX(𝐺, 𝑣) = KLX(𝐺[𝐵1 ∪ {𝑥}], 𝑥).

• KLX(𝐺) ≥ KLX(𝐺[𝐵2 ∪ {𝑥}], 𝑥) Let 𝑣 be the walk of best KLX, and note 𝑖1, …, 𝑖𝑛 the instants where
𝑥 occurs in 𝑣. Two cases:
‣ If 𝑣0 ∈ 𝐵1, then since a path from 𝑣0 to 𝐵1 must go through 𝑥, there is two 𝑖𝑘, 𝑖𝑘+1 such than

𝑣′ ≔ ⟨𝑣𝑖𝑘
, 𝑣𝑖𝑘+1, …, 𝑣𝑖𝑘+1

, 𝑥⟩ is a DFS walk of 𝐺[𝐵1 ∪ {𝑥}], starting from 𝑥. Then 𝒪𝑣′

𝑡 ⊆ 𝒪𝑣
𝑡+𝑖𝑘−1, so

KLX(𝐺[𝐵2 ∪ {𝑥}], 𝑥) ≤ KLX(𝐺)
‣ Otherwise, the path from 𝑣0 to 𝐵1 must pass through 𝑥, and by the same reasoning KLX(𝐺[𝐵2 ∪

{𝑥}], 𝑥) ≤ KLX(𝐺[𝐵1 ∪ {𝑥}], 𝑥) ≤ KLX(𝐺) □

10/24

Corollary let 𝐺 be a graph and a node 𝑟 ∈ 𝐺 be a vertex, representing a root. Denote 𝐺′ the following
graph, obtained from two copies of 𝐺 connected both with 𝑟 to a new node 𝑐 :

c𝐺1 𝐺2

Then KLX(𝐺′) = KLX(𝐺, 𝑟). The proof is direct since KLX(𝐺1, 𝑟) ≥ KLX(𝐺′) ≥ KLX(𝐺2, 𝑟). We will
use this construction because it “forces” the DFS of best KLX to start at some node. For example, we can
use this construction to proove that the NP-Hardness stays even if we root the graph.

Prop (The cycle-lemma) For every graph 𝐺, DFS walk 𝑣, and cycle 𝐶 = ⟨𝑐1, …, 𝑐𝑛⟩, for every edge 𝑒 ∈ 𝑣 ∩
𝐶 that is both in the DFS and the cycle, there is an edge 𝑒′ ∈ 𝐶 such that 𝑒′ ∈ 𝒪𝑒

Proof It all comes down to the fact that in a DFS, if there is a non-visited path from 𝑥 to 𝑦 when you enter
𝑥, you know that 𝑦 ∈ 𝑇 (𝑥) (𝑦 will be a child of 𝑥). This is because when entering a node 𝑥, all of the leftover
graph accessible from 𝑥 will be visited by the DFS, including 𝑦.

Take a directed edge 𝑒 = (𝑐𝑖, 𝑐𝑖+1) ∈ 𝑣 ∩ 𝐶 (same reasoning if the edges goes the other way with (𝑐𝑖+1, 𝑐𝑖)),
and consider the first vertex 𝑐𝑗 in the same direction that have already been visited when taking 𝑒 for the
first time (if we loop all around, we have 𝑐𝑗 = 𝑐𝑖, see Figure 4). Let 𝑒′ = (𝑐𝑗−1, 𝑐𝑗), we will show that 𝑒′ ∈
𝒪𝑒: since there is a path from 𝑐𝑖+1 to 𝑐𝑗−1, 𝑐𝑗−1 ∈ 𝑇(𝑐𝑖), while 𝑐𝑖 ∈ 𝑇(𝑐𝑗), by transitivity of the parent
relation, we have that 𝑐𝑗−1 ∈ 𝑇(𝑐𝑗) and therefore is a backward edge the will be open during (at minima)
the path from 𝑐𝑗−1 to 𝑐𝑗 in the DFS. Since (𝑐𝑖, 𝑐𝑖+1) is in this path, 𝑒′ ∈ 𝒪𝑒. □

0
1

2

3

𝑒
4

5

𝑒′
6

7

8

9

Figure 4: In red the visited edged/ build DFS at the moment of visiting 𝑒 = (4, 5).
Here 𝑒′ = (6, 7), and the property of a DFS, we know that 6 will be a children of 𝑒,

meaning that 𝑒′ will be open when comming back from 𝑒.

Prop (The Path Lemma) Let 𝐺 be a simple graph with 𝑢 a degree 2 vertex. Let 𝑎, 𝑏 be the two neighbour
of 𝑢 in G, then 𝐺′ ≔ 𝐺 − 𝑢 + {𝑎, 𝑏} and 𝐺 have the same KLX.

Proof Denote 𝑣 the KLX walk in 𝐺 and 𝑣′ the KLX walk in 𝐺′. First, notice that 𝑣 can be transformed into
a DFS walk of 𝐺′ by removing 𝑢 of the sequence, because 𝒪𝑣′

(𝑎,𝑣) = 𝒪𝑣
(𝑎,𝑢) = 𝒪𝑣

(𝑢,𝑏). And on the other way,
to transform 𝑣′ into a DFS walk of 𝐺, there is two cases:
• If (𝑎, 𝑏) ∈ 𝑣′, then we insert 𝑢 in beetween and we will have the same open set equality
• If (𝑎, 𝑏) ∉ 𝑣′, then suppose that 𝑎 is the first node to be fully visited. We will have (𝑎, 𝑏) ∈ 𝒪(𝑎,𝑝𝑎) with

𝑝𝑎 the parent of 𝑎. Replace at ⌈𝑎⌉ the sequence ⟨…., 𝑎, 𝑝𝑎, …⟩ by ⟨…., 𝑎, 𝑢, 𝑎, 𝑝𝑎, …⟩. The open sets of 𝑣
will contain (𝑢, 𝑏) instead of (𝑎, 𝑏) everywhere where it was contained, and 𝒪𝑣

(𝑢,𝑎) = 𝒪𝑣
(𝑎,𝑝𝑎) □

Remark This tells us that simple paths in the graph doesn’t add complexity, and in a way we can always
consider the case where the graph doesn’t have any node of degree 2. Since degree 1 vertexes can also
be erased as they won’t open any edges (see the 1-connected lemma), the complexity of the KLX number
reigns in choices for the DFS of who to visit first.

11/24

4.2. Characterizations of graphs of KLX=0 and KLX=1
I will here describe graphs of KLX number 0 and graphs of KLX number 1 using cycles. Thoses two results
can be used to have a polynomial algorithm to test if a graph is of KLX number 0 or 1.

Theorem 1: For 𝐺 a simple graph, KLX(𝐺) = 0 ⇔ 𝐺 is a tree.

Proof A tree 𝑇 have KLX(𝑇) = 0 as no backward edges exist for the unique DFS. Let 𝐺 be a graph of
KLX(𝐺) = 0. Then there is a DFS tree 𝑇 with no backward edges. Since |𝐸𝑇 | = |𝐸𝐺|, we have 𝑇 = 𝐺.

Corrolary There is a linear time algorithm to test if a graph is of KLX = 0 as we just need to test if it is a
tree. Test if |𝐸| = |𝑉 | − 1 and do a BFS in 𝑂(|𝐸| + |𝑉 |) = 𝑂(|𝑉 |).

We will say that by “kissing-edge cycles” the fact that two cycles share an edge.

Lemma A graph contains two cycles that share an edge iff it contains two cycles that contains a contigueous
series of edges and all other edges are distincts.

Proof If it contains two cycles that contain a contigueous series of edges, then they share an edge. The other
way is a bit more subtle. Take any two edge-kissing cycle 𝐶 = ⟨𝑐1, 𝑐2, …, 𝑐|𝐶|⟩ and 𝐶′ = ⟨𝑐′

1, 𝑐′
2, …, 𝑐′

|𝐶′|⟩.
Since they are distinct, suppose 𝑐1 ≠ 𝑐′

1. Take 𝑖 the smallest integer such than 𝑐𝑖 ∈ 𝐶′ and 𝑗 the biggest
integer such than 𝑐𝑗 ∈ 𝐶′ (they exists because they are edge-kissing cycles), and note 𝑃 a path from 𝑐𝑖 to
𝑐𝑗 in 𝐶′. Then let

𝐶∗ ≔ ⟨𝑐𝑗, …, 𝑐|𝐶|, 𝑐1, …, 𝑐𝑖⟩ ‖ 𝑃

We have 𝐶′ and 𝐶∗ that are edge-kissing cycle on 𝑃 , and only on 𝑃 by the minimality (respc. maximality)
of 𝑖 (respc. 𝑗) □

Theorem 2: For all 𝐺 a simple graph, KLX(𝐺) = 1 ⇔ 𝐺 doesn’t contain two kissing-edge cycles.

Proof:
• ⇒ Let 𝑣 be the DFS walk of KLX = 1, and suppose by contradiction that there is two edge-kissing

cycles, say 𝐶 = ⟨𝑐1, …., 𝑐|𝐶|⟩ and 𝐶′ = ⟨𝑐′
1, …., 𝑐′

|𝐶′|⟩ with the common edges 𝐸 = (𝑐1, 𝑐2, …, 𝑐𝑘) =
(𝑐′

1, 𝑐′
2, …, 𝑐′

𝑘). By the lemma we can assume that all other edges are distincts. We will first show that
there exists an edge of the common edges 𝑒 ∉ 𝑣: Suppose by contradiction that all edges 𝐸 ∈ 𝑣. Then by
the cycle lemma on any 𝑒 ∈ 𝐸, we have an edge 𝑒1 ∈ 𝐶 − 𝐸 and 𝑒2 ∈ 𝐶′ − 𝐸 such than 𝑒1, 𝑒2 ∈ 𝒪𝑒;
This is a contradiction as 𝑒1 ≠ 𝑒2 and |𝒪𝑒| ≤ 1
Therefore we have 𝑒 ∈ 𝐸 an open edge. Suppose that we visit 𝑐1 before 𝑐2 (the situation is symetric).
Because 𝑐2 is connected to 𝑐1, we have 𝑐2 ∈ 𝑇(𝑐1) and therefore there is a taken path from 𝑐1 to 𝑐2, note
it 𝑝 = ⟨𝑐1 = 𝑝1, …, 𝑝𝑛 = 𝑐2⟩. Two cases:
‣ If 𝑝 = 𝐶 , then by taking the cycle composed by 𝐶 − 𝐸 followed by 𝐶′ − 𝐸 (in the opposite direction)

and applying the cycle lemma on any element 𝑥 of 𝑃 , we get that both 𝑒, 𝑒′ ∈ 𝒪𝑥 for 𝑒 ≠ 𝑒, a contra-
diction.

‣ Otherwise, we have two path from 𝑐1 to 𝑐2 that are different for at least a vertex: 𝐶 − 𝐸 and 𝑝. We can
therefore find a cycle composed of only edges of element of 𝑃 ∪ (𝐶 − 𝐸), and by applying the cycle
lemma on any edge 𝑒′ of 𝑃 in this cycle we get the existence of 𝑥 ∈ 𝒪𝑒′ , while we also have 𝑒 ∈ 𝒪𝑒′ ,
and 𝑒 ≠ 𝑥, a contradiction.

• ⇐ Let 𝐺 be a graph without two edge-kissing cycles. Intuitively, will will show that it looks like a tree
with some cycles replacing some vertexes. We will consider the DFS walk that start at any vertex, and for
any edge in a cycle, visit all neighbour before the next in the cycle. Then for any backward edge 𝑒, the
moments in wich the edges 𝑡 is open is exacly the only cycles containing 𝑒. Since no two cycles overlap,
the KLX is 1. □

Remark They can share a common vertex, just not a common edge. 42 cycles attached on a single vertex,
by the 1-connected lemma on said vertex, only have a KLX of 1.

12/24

Corrolary There is a 𝑂(𝑉) algorithm to test if a graph has KLX = 1.

Proof First, since two cycles cannot share an edge, there cannot be more than 2|𝑉 | edges. Then, using
a DFS in which for every edge we mark if it is or not already in a cycle, we can verify that the graph is
connected (all edges has been visited) and that every edge is in a single cycle by checking that is is marked
only once.

4.3. Counter-Examples of conjectures
A few conjectures have been formulated during my internship, that I manage to disprove:
• A hamiltonian path (if it exists) is always the DFS tree of best KLX.
• The KLX number is monotone: removing an edge never increases the KLX number.
• There is a function of the Tree-Width that bounds the KLX number.

We shall give a counter example to each of them here.

Prop A hamiltonian path is not always the best KLX DFS tree

Proof Consider the following counter example graph:

a

b

x

y

The graph only has a single hamiltonian path 𝑣, so the best KLX for a hamiltonian path is 3 (See Figure 5)

a

b

x

y

Figure 5: The only hamiltonian path. In dash, the backward edges contained in 𝒪{𝑥,𝑦}

But the following DFS tree has a KLX of 2 (because the two backward edges on the top will not be open
simultaneously):

a

b

x

y

Prop Removing an edge may grow (asymptotically) the KLX by a factor of 2.

Proof Let 𝑛 be an even positive number, consider the following graph 𝐺𝑛, formed from two cycles of length
𝑛 (we will call them 𝐶left and 𝐶right), each connected on every node to respectfully two nodes a and b,
themselved connected by a center node 𝑐. :

𝑐

𝑎

…
𝑛

𝑏

…
𝑛

By the 1-connectedness lemma, we have that KLX(𝐺[{𝑐, 𝑎} ∪ 𝐶left], 𝑐) ≤ KLX(𝐺) ≤ KLX(𝐺[{𝑐, 𝑏} ∪
𝐶right], 𝑐) = KLX(𝐺[{𝑐, 𝑎} ∪ 𝐶left], 𝑐), and one can check that KLX(𝐺[{𝑎} ∪ 𝐶left], 𝑎) is 𝑛 − 1: watever
first edge 𝑒 we take from 𝑎 (it’s a cycle so it’s all symmetric), all the other edge starting from 𝑎 going to
𝐶left will be open, plus one due to the cycle 𝐶left.

13/24

Consider adding an edge from a vertex from 𝐶right to 𝑐, we will show that there is a DFS walk of KLX =
𝑛
2 + 2. Note 𝐶left = ⟨𝑐1, …, 𝑐𝑛⟩ the vertexes of first cycle (in order) and 𝐶right = ⟨𝑐′

1, …, 𝑐′
𝑛⟩. Without loss

of generality, suppose that the edge is (𝑐, 𝑐′
1). Consider the following DFS (see Figure 7):

𝑣 = ⟨𝑐1, …, 𝑐𝑛
2
, 𝑎, 𝑐𝑛

2 +1, …, 𝑐𝑛−1, 𝑐𝑛, 𝑐𝑛−1, …,𝑛
2 +1, 𝑎, 𝑐, 𝑐′

1, …, 𝑐′𝑛
2
, 𝑏, 𝑐′𝑛

2 +1, …, 𝑐′
𝑛−1, 𝑐′

𝑛,

𝑐′
𝑛−1, …, 𝑐′𝑛

2 +1, 𝑏, 𝑐′𝑛
2
, …, 𝑐′

1, 𝑐, 𝑎, 𝑐𝑛
2
, …, 𝑐1⟩

𝑐

𝑎

…
𝑛
2

…
𝑛
2

𝑏

…
𝑛
2

…
𝑛
2

Figure 7: DFS of KLX = 𝑛
2 + 2 in red arrows

The biggest values of the |𝒪𝑒| for 𝑒 ∈ 𝑣 are:
• 𝑛

2 + 1 edges on the time corresponding with the edge {𝑏, 𝑐′𝑛
2 +1}

• 𝑛
2 + 2 edges on the time corresponding with the edge {𝑏, 𝑐′𝑛

2
}

• 𝑛
2 + 1 edges on the time corresponding with the edge {𝑎, 𝑐𝑛

2 +1}
• 𝑛

2 edges on the time corresponding with the edge {𝑎, 𝑐𝑛
2
}

with KLX(𝐺𝑛 + {𝑐, 𝑐′
1}) = 𝑛

2 + 2. Removing the {𝑐, 𝑐′
1} edge from 𝐺𝑛 + {𝑐, 𝑐′

1} will cause the KLX to
grow by a factor of 2 − 2

𝑛 □

Prop There is a familly of graphs of bounded Tree-Width and unbounded KLX

Define by induction a serie of graphs 𝑇𝑛 for all 𝑛 ∈ ℕ with 𝑇0 being a single edge with two vertex 𝑠 and
𝑡, and 𝑇𝑛+1 being made by taking two copy of 𝑇𝑛 and connecting the two 𝑠1, 𝑠2 to a newly created 𝑠 and
simmilarly for 𝑡1, 𝑡2 to 𝑡:

 𝑡

 𝑠

For 𝑛 = 0:

 𝑡

 𝑇𝑛−1 𝑇𝑛−1

 𝑠

For 𝑛 > 0:

Prop For all 𝑛 ∈ ℕ, TW(𝑇𝑛) ≤ 2

Proof Thoses graphs are series-parrallel graph: the curious reader may want to look at [8] for a definiton
of this class of graphs. An important properties of this familly: they all have a tree-width ≤ 2

Prop ∀𝑛 > 0, KLX(𝑇𝑛+1) ≥ 𝑛

First let’s show that KLX(𝑇𝑛+1) ≥ KLX(𝑇𝑛, 𝑠). Intuitively, the idea is a bit simmilar to the 1-connected
lemma, but instead of having KLX(𝑇𝑛, 𝑠) we have min{KLX(𝑇𝑛, 𝑠), KLX(𝑇𝑛, 𝑡)} (but 𝑇𝑛 rooted in 𝑠 is
isomorphic to 𝑇𝑛 rooted in 𝑡). Given a DFS walk 𝑣 of 𝑇𝑛+1, there is a moment 𝑖 in which it enter one 𝑇𝑛
from either 𝑠 or 𝑡 (if it starts on the left 𝑇𝑛 it will enter the right one at some point). By symmetery, suppose
it enter the left 𝑇𝑠 by 𝑠. Consider 𝑣′ = ⟨𝑣𝑖, …, 𝑣𝑘⟩ from wich we removoved all vertexes that isn’t in the
left instance of 𝑇𝑛. Then 𝑣′ is a DFS walk as the moment in question are precisely the subtree 𝑇 (𝑡) – and
removing the vertex from a sub-tree of a DFS keep the fact that it is still a DFS. Since we have for all 𝑒 ∈
𝑣′, 𝒪(𝑣′)

𝑒 ⊆ 𝒪(𝑣)
𝑒 , and since 𝑣′ is a DFS of 𝑇𝑛 starting from 𝑠, we have KLX(𝑇𝑛+1) ≥ KLX(𝑇𝑛, 𝑠)

14/24

We will show that KLX(𝑇𝑛) ≥ 𝑛. For this, we will prove by induction that the path from 𝑠 to 𝑡 contains
an edge 𝑒 such than |𝒪𝑒| ≥ 𝑛:
• Initialization For 𝑛 = 0 we have KLX(𝑇0) = 0 as 𝑇0 is a tree.
• Heredity We’ll note 𝑠1, 𝑠2 the two neighbooring vertexes of 𝑠, aka the 𝑠’s of the (respectively) left and

right 𝑇𝑛, and by symmetry, suppose the DFS (that we will call 𝑣) starts going to 𝑠1. Then the DFS will
go do a DFS walk of the left 𝑇𝑛 (call it 𝑣′). By induction there is an edge 𝑒 such than |𝒪(𝑣′)| ≥ 𝑛 But we
have 𝑠2 that will be visited, and therefore {𝑠, 𝑠2} will be open for -at minimum- every edge in the path
from 𝑠 to 𝑠2. Therefore since 𝒪(𝑣′)

𝑒 ⊆ 𝒪(𝑣)
𝑒 and {𝑠, 𝑠2} ∈ 𝒪(𝑣)

𝑒 , we have |𝒪(𝑣)
𝑒 | ≥ 𝑛 + 1

Therefore KLX(𝑇𝑛+1) ≥ KLX(𝑇𝑛, 𝑠) ≥ 𝑛. □

Corollary KLX is unbounded even for graphs that are planar 3-regular and have a bounded tree width.

5. Upper and lower bounds
We will show 4 bounds of the KLX number here:
• Two NP-Hard lower bounds related to tree-width and cut-width
• An upper bound and a lower bound both relating to cycles.

5.1. TW(𝐺) ≤ KLX(𝐺) + 1
Proof For this we transform the KLX DFS into a edge-tree a bit like a line graph. For 𝐺 a graph of
KLX(𝐺) = 𝑘, let 𝑇 be the directed DFS such than KLX(𝑇) ≤ 𝑘. Then consider the line-graph of T, defined
as the graph 𝑇 ′ where nodes are 𝑇 ’s edges (𝑉𝑇 ′ = 𝐸𝑇) and where two edges are connected to each other
if one if the direct child of the other (𝐸𝑇 ′ = {{(𝑥, 𝑦), (𝑦, 𝑧)} : 𝑥, 𝑦, 𝑧 ∈ 𝑇𝑉 }).

For an edge 𝑒 (or a position in the DFS walk), denote 𝒪st
𝑒 ≔ {𝑜st : 𝑜 ∈ 𝒪𝑒} the set of all the “deeper side”

of the open edges. First, remark that the list of position 𝑡 such than 𝑢 ∈ 𝒪st
𝑒 is continuous: it is a union of

interval of the form ⟦⌈𝑢⌉; ⌊𝑣⌋≥⌈𝑢⌉⟧, all starting at the same point. This will be our bags, and the intuition
is that we keep thoses open until we reach the second part of the backward edge.

For every node 𝑒 = {𝑢, 𝑣} of 𝑇 ′, we define the bag 𝐵𝑒 ≔ 𝒪st
𝑒 ∪ {𝑢, 𝑣}. We therfore have |𝐵𝑒| ≤ |𝒪𝑒| + 2 ≤

KLX + 2. We then show that 𝑇 ′ is a tree decomposition of 𝐺:
• By definition, every bag is a subset of 𝑉𝐺
• For every edge 𝑒 ∈ 𝐺𝐸 , there is two cases:

‣ If 𝑒 ∈ 𝐸𝑇 , then the bag 𝐵𝑒 contains both 𝑥 and 𝑦
‣ If 𝑒 = {𝑥, 𝑦} ∉ 𝐸𝑇 , then it is a backward edge. Suppose 𝑥 ≤ 𝑦. Consider 𝒪⌈𝑦⌉≥⌊𝑥⌋−1: it’s when we take

the edge {𝑐, 𝑦} with 𝑐 the child in the direction of 𝑥 (such than 𝑥 ∈ 𝑉𝑇(𝑐)). Since 𝑐 ≠ 𝑥 because 𝑒 ∉
𝐸𝑇 , we have {𝑥, 𝑦} ∈ 𝒪⌈𝑦⌉≥⌊𝑥⌋−1, and therefore 𝑥, 𝑦 ∈ 𝐵{𝑐,𝑦}.

• We use the equivalent property: Let 𝑒1, 𝑒2 ∈ 𝐸𝑇 be two edges and let 𝑒′ ≠ 𝑒1, 𝑒2 be an edge in the path
from 𝑒1 to 𝑒2. Let 𝑢 ∈ 𝐵𝑒1

∩ 𝐵𝑒2
. There is 3 cases:

‣ 𝑢 ∈ 𝒪st
𝑒1

∩ 𝒪st
𝑒2

. Because of the continuous property, 𝑢 ∈ 𝒪st
𝑒′

‣ 𝑢 ∉ 𝒪st
𝑒1

∧ 𝑢 ∈ 𝒪st
𝑒2

. This means that 𝑒1 is before 𝑒2 in the DFS ordering, as having a 𝑢 ∈ 𝒪st
𝑡 means that

𝑡 ≥ ⌈𝑢⌉. Therefore at least one open edge uses 𝑢, and therefore 𝑢 ∈ 𝒪st
parent(𝑒1) or 𝑢 ∈ 𝒪st

parent(parent(𝑒1))
for 𝑡 the moment of wich 𝑒1 occurs, depending of if 𝑢 is the lower part of the upper part of the edge
𝑒1. So either case 1 apply, or parent(𝑒1) = 𝑒′ or parent(parent(𝑒1)) = 𝑒′. In all cases, 𝑢 ∈ 𝐵𝑒′

‣ 𝑢 ∈ 𝑒1 ∧ 𝑢 ∈ 𝑒2. This means that 𝑒1 is a direct child of 𝑒2 (or vice-versa), and that’s in contradiction
with the existence of 𝑒′

Therfore TW(𝐺) ≤ max|𝐵𝑋| − 1 + 2 ≤ KLX + 1. The inequality is strict in some cases.

5.2. CW(𝐺) ≤ KLX(𝐺)Δ(𝐺)
Proof Given a DFS walk ⟨𝑣𝑖⟩𝑖 of minimum KLX number, pose the ordering 𝜑 : 𝑉 → ℕ : 𝑥 ↦ ⌈𝑥⌉ and
normilize it into an ordering 𝜑 : 𝑉 → [|𝑉 |]. We will show that its cutwidth is less than KLX × Δ(𝐺).

15/24

Note how a vertex 𝑥 ∈ 𝑉𝐺 appears at most deg 𝑥 + 1 times in ⟨𝑣𝑖⟩𝑖. For a given vertex 𝑣 ∈ 𝑉𝐺, let’s note
𝑣1, …, 𝑣𝑑 with 𝑑 ≤ deg 𝑣 + 1 the positions of 𝑣 in ⟨𝑣𝑖⟩𝑖. Let 1 ≤ 𝑡 < |𝑉 |; Since 𝜑 is bijective, there is a
𝑣 ∈ 𝑉 such than 𝜑(𝑣) = 𝑡, and let 𝑒 = {𝑥, 𝑦} ∈ 𝐸 be such than 𝜑(𝑥) ≤ 𝑡 < 𝜑(𝑦), we will show that 𝑒 ∈
⋃2≤𝑖≤𝑑 𝒪𝑣𝑖

. There is two cases:
• If 𝑦 = 𝑣, then since 𝑒 is a backward edge closing on 𝑣 there is a 𝑖 such than 𝑒 ∈ 𝒪𝑣𝑖

. Note how 𝑖 ≥ 2 as
𝜑(𝑥) ≤ 𝑡, so 𝑥 cannot be seen before the first time we see 𝑣.

• Otherwise, this means that 𝜑(𝑥) ≤ 𝑡 < 𝜑(𝑦), and therefor 𝑣 ∈ 𝑇 (𝑦), so 𝑣 is in the path from 𝑥 to 𝑦,
therefor 𝑒 ∈ 𝒪𝑣𝑖

 for all 𝑖 ≤ 𝑑.

Finally, since we have the cut of instant t that is lower than | ⋃𝑖≤𝑑 𝒪𝑣𝑖
| ≤ deg 𝑣 × KLX(𝐺), we have

CW(𝐺) ≤ KLX(𝐺)Δ(𝐺). □

5.3. KLX(𝐺) ≤ number of touching cycles
Proof For an edge 𝑒, call its cycle number the number of cycles that passes through 𝑒. Then the maximal
cycle number of an edge is an upper bound to the KLX number: Take a graph of KLX = 𝑘, note 𝑒 such
than |𝒪𝑒| = 𝑘. Take 𝑒′ = {𝑥, 𝑦} ∈ 𝒪𝑒: there is a path 𝑥 ⟿ 𝑒 ⟿ 𝑦 in the DFS tree, and therefor a cycle
with the edge 𝑒′. But two 𝑒′, 𝑒″ ∈ 𝒪𝑒 cannot have the same cycle as otherwise an edge of a cycle is both
open in one and a part of the DFS in the other. So the cycles must be distincts. □

5.4. Number of disjoint cycles ≤ KLX(𝐺)
Proof For a given edge, call its disjoints cycle number the number of edge-distincts cycles that passes through
it. Then the maximal disjoints cycle number is a lower bound to the KLX. This can easely be proven by using
the Cycle Lemma on the edge of maximal disjoints cycle number and on every distinct cycle, as the open
edges are required to be distincts since all cycles are distincts. □

6. NP Hardness
We are intressted in the decision problem associated with the optimisation problem of the KLX number, I
will show that the KLX problem stay NP-Hard even in some very restricted class of graphs.

Consider the following two problems:

– KLX –

Input: 𝐺 a graph and a 𝑘 ∈ ℕ
Output: Is KLX(𝐺) ≤ 𝑘 ?

– Rooted KLX –

Input: 𝐺 a graph, 𝑟 ∈ 𝑉𝐺 a root and a 𝑘 ∈ ℕ
Output: Is KLX(𝐺, 𝑟) ≤ 𝑘 ?

[1] already prooved that KLX is NP-Complete. We will prove that both KLX is NP-Complete even when
restricted to the following classes of graphs:
• planar, bipartite and of Δ(𝐺) ≤ 4
• bridgeless, planar, bipartite and of Δ(𝐺) ≤ 5

For both cases, the method use will be simmilar, just with two distinct graph gadjet.

We will consider a reduction from a restricted version of HAMILTONIAN PATH , proven NP–Hard by [9]5:

5Actually, they only prooved that the cycle version is NP-Hard, but by transforming an edge we know the cycle will pass
through into a gadget forcing an endpoint to be here, we can consider RESTRICTED HAM. PATH instead

16/24

– RESTRICTED HAM. PATH –

Input: 𝐺 a graph that is 2-connected, 3-regular, and bipartite
Output: Does there exists a hamiltonian cycle over 𝑉𝐺?

Since being 2-connected implies being bridgeless and since being 3-regular implies Δ(𝐺) ≤ 3, we conclude
that the hamiltonian cycle is NP-Hard over the class of bridgless, planar, bipartie graph of Δ(𝐺) ≤ 3.

Prop KLX over the class of planar, bipartite graph of Δ(𝐺) ≤ 4 is NP-Hard.

Proof Let 𝐺 be an instance of RESTRICTED HAM. PATH . Let 𝑘 be any upper bound to KLX(𝐺)
computable in polynomial time (we may take 𝑘 = |𝑉𝐺|, but any upper bound is valid). Take 𝔾 any 3-regular
graph such than KLX(𝐺, 𝑟) = 𝑘 (you can take the 𝑇𝑛 familly of graph used for a coutner-example of
bounded tree-width but unboundede KLX). We transform 𝐺 into 𝐺′ by attaching every node 𝑣 ∈ 𝐺 to its
own copy of 𝔾 like the following

𝑟 …

We then ask if KLX(𝐺′) ≤ 𝑘.

Prop KLX(𝐺′) ≤ 𝑘 iff there is a hamiltonian path.

• ⇒ Suppose that KLX(𝐺′) ≤ 𝑘. Then, because of the 1-connected lemma we have KLX(𝐺′) ≥ 𝑘 and
therefore KLX(𝐺) = 𝑘. Let 𝑇 ′ be a DFS tree of 𝐺′ of KLX = 𝑘. We then take 𝑇 = 𝐺[𝑇 ′], the same tree
in wich we “forgot” about the 𝔾𝑘 part for every vertex. We will show that this DFS tree is a hamiltonian
path. Suppose by contradiction that there exist a node 𝑢 ∈ 𝑇 of degree ≥ 3. Since 𝑢 may have a parent,
this means that 𝑢 have at least 2 children in 𝑇 , let’s name them 𝑥, 𝑦. Suppose that we visit 𝑥 first. Since
the graph 𝐺 is 2-connected, 𝑢 is 2-connected and therefore both 𝑇 (𝑥) and 𝑇 (𝑦) must be connected to
somewhere. Since we are in a DFS, this must be connected to a parent of 𝑢. Therefore when visiting 𝑇 (𝑥)
we have to open a backward edge to a parent of 𝑢 that will stay open when visiting 𝑦. So we won’t be
able to complete the 𝔾 subgraph of 𝑇 (𝑦) with 1 less possible open edge.

• ⇐ If there is a hamiltonian path ⟨𝑢𝑖⟩𝑖≤𝑛 in 𝐺, consider the DFS walk ⟨𝑣𝑖⟩𝑖 that, whenever the DFS visit
a new node 𝑢 ∈ 𝐺, it will visit the connected graph with the same DDFS of KLX 𝑘 before continuing
with the DFS. Then for every edge in a copy of 𝔾, we have |𝒪𝑒| ≤ 𝑘 as the only open edges are from 𝔾
and KLX(𝔾, 𝑟) = 𝑘. For every edge 𝑒 of the graph 𝐺, since KLX(𝐺) ≤ 𝑘, we have |𝒪𝑒| ≤ KLX(𝐺) ≤
𝑘. □

Prop KLX over the class of planar, bridgeless, bipartite graph of Δ(𝐺) ≤ 5 is NP-Hard.

Proof It’s the exact same proof, but instead of attaching 𝔾 to a node, we merge each 𝑣 ∈ 𝑉𝐺 with a degree-
two node of 𝔾, like the following:

𝑟 …

For example, you can use 𝑇𝑛 and merge each 𝑣 with the top-most node 𝑠 of 𝑇𝑛. The same proof apply. □

17/24

7. Courcelle’s theorem for KLX
We note 𝑢 ≥ 𝑣 if a 𝑢 is a grandparent of 𝑣 and 𝑢 > 𝑣 if 𝑢 ≥ 𝑣 ∧ 𝑢 ≠ 𝑣.

Testing if a tree is a DFS tree was already proven to be MSO1-expressible. For example, [10] showed that
trees with a DFS of height less than 𝑘 are MSO1-expressible. The method described here allows to store
with a bounded amont of labels a “choice” of a neighboors for every node (the parent). This method will be
built upon after showing that KLX is MSO2-expressible, and by Courcelle’s theorem this will show that
for all 𝑘, 𝑡 ∈ ℕ there exists a 𝑂(𝑛) algorithm that tests if a graph of tree-width ≤ 𝑡 has a KLX ≤ 𝑘. We
will only show the proof that DFS(𝑇) is MSO2-expressible here, putting the proof that KLX≤𝑘 is MSO2
-expressible in the annexes (see Section 9.1).

7.1. DFS(T,G) is MSO2-expressible
Given a spanning tree 𝑇 = (𝑉 , 𝑇𝐸) of 𝐺 = (𝑉 , 𝐺𝐸), let us label every edge and node in {⊤, ⊥} according
to the following 3 rules:
• R1: A node (the root) have label ⊤ and all its connected edges are labeled with ⊥
• R2: For all arc (𝑢, 𝑣) ∈ 𝑇 , we have 𝑢 labeled with ⊤ iff 𝑣 is labeled with ⊥
• R3: For all node (except the root) labeled with 𝑥, only one arc connected to the node (the arc toward the

parent) have label 𝑥.

Rules R1 and R2 impose the label on the node 𝑢 to be labeled with ⊤ iff the node 𝑢 is at an even depth
from the root.

Prop Given two nodes 𝑢, 𝑣 ∈ 𝑉 , we have an alternating sequence of ⊤/⊥ on the path from 𝑢 to 𝑣 iff 𝑢 ≤
𝑣 or 𝑣 ≤ 𝑢.

Proof

We show by induction on the depth of 𝑢 a node, that it is labeled ⊤ iff the parent is the only one labeled ⊤:
• Initialization For nodes of depth 1, they are all labeled with ⊥ and due to R1 all connections to the root

are also labeled ⊥ given a node 𝑢 of label ⊤, its parent is of label ⊥.
• Inductive step Take a node 𝑢 and it’s parent 𝑝. We will do the case where 𝑢 is labeled ⊤ (exact same

reasoning for ⊥). Then 𝑝 is labeled with ⊥ and the only arc from 𝑝 with label ⊥ is 𝑝 and its parent.
Therefore the arc (𝑢, 𝑝) have label ⊤.

Finally, given two nodes 𝑢, 𝑣, we have 𝑢 ≥ 𝑣 ∨ 𝑣 ≤ 𝑢 iff the path doesn’t go from a children to a children
iff there is no twice the same label.

Corollary A tree 𝑇 is a DFS tree in the graph 𝐺 = (𝑉 , 𝐸) iff there exists a labeling of 𝑇 and a node 𝑟
respecting the rules R1, R2 and R3 such that for all edges (𝑢, 𝑣) ∉ 𝑇𝐸 , the path from u to v is an alternating
sequence of ⊤/⊥

The idea now to encode our labeling is to consider a set 𝑋 that contain all nodes/arcs labeled with ⊤ (the
others ones being labeled with ⊥).

Theorem DFS(𝑇 , 𝑟, 𝑋) that given 𝑟 a root node and 𝑇 a tree, test if the set 𝑋 describe a correct labeling
of 𝑇 that respect R1, R2 and R3 is MSO-definable.

Proof We define 𝜑1, 𝜑2, 𝜑3 that check each of R1, R2 and R3, and 𝜓 that test that all edges not covered
forms an alternating labeled path of ⊤/⊥:

18/24

DFS(𝑇 , 𝑟, 𝑋) ≔ 𝑟 ∈ 𝑋 ∧ 𝜑1 ∧ 𝜑2 ∧ 𝜑3 ∧ 𝜓
𝜑1 ≔ ∀𝑒 ∈ 𝐸, ∀𝑣, (𝑟, 𝑣) = 𝑒 ⇒ 𝑒 ∉ 𝑋
𝜑2 ≔ ∀(𝑢, 𝑣) ∈ 𝑇 , 𝑢 ∈ 𝑋 ↔ 𝑣 ∉ 𝑋.
𝜑3 ≔ ∀𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑟 ⇒ ∃(𝑣, 𝑛) ∈ 𝑇 , ∀(𝑣, 𝑢) ∈ 𝑇 , ((𝑣, 𝑛) ∈ 𝑋 ↔ 𝑣 ∈ 𝑋) ∧ [((𝑣, 𝑢) ∈ 𝑋 ↔ 𝑣 ∈ 𝑋) → 𝑢 = 𝑛].

Parent(𝑐, 𝑝) ≔ ∃(𝑐, 𝑝) ∈ 𝑇 , (𝑐 ∈ 𝑋 ↔ (𝑐, 𝑝) ∈ 𝑋)

𝜓 ≔ ∀(𝑢, 𝑣) ∈ 𝐸 ∩ 𝑇 , ∀(𝑎, 𝑏), (𝑏, 𝑐) ∈ Path(𝑢, 𝑣, 𝑇), (𝑎, 𝑏) ∈ 𝑋 ↔ (𝑏, 𝑐) ∉ 𝑋

Corollary DFS(𝑇) that test if a tree 𝑇 is a DFS tree is MSO-expressible.

Proof The formula is DFS(𝑇) ≔ ∃𝑟, ∃𝑋, DFS(𝑇 , 𝑟, 𝑋)

7.2. KLX𝑘 is MSO2 expressible and Courcelle’s theorem
Theorem KLX𝑘 that accepts only graphs of KLX ≤ 𝑘 is MSO2-definable.

Proof See Section 9.1 in annexes for the proof.

Corollary For all 𝑡, 𝑘 ∈ ℕ, there exists a 𝑂(𝑛) algorithm that test if a graph 𝐺 of tree-width ≤ tw have a
KLX number less or equal to 𝑘.

Proof This is the application of Courcelle’s theorem on the formula given by the proof.

8. Conclusions
While initially I was supposed to work on the oritatami model, a model of RNA folding and optimizing
the turing-complete proof for a small number of bead types, a complete different subject, my intrest has
shifted as my reasaerch advisor showed me this KLX number. I proceed to work on it and disprove some
conjectures. And we decided to change the subject a month in to be fully around the KLX number. All
results in this document are by me unless explicitly stated, including the counter examples.

Results An overview of my results:
• Some lemmas and counter-examples to give a better understanding of the way the KLX number works
• Two lower bounds, both linked to tree-width and cut-width
• A computable lower and upper bound linked to cycles
• A fixed-parameter-tracable (aka polynomial if specific values are bounded) algorithm to test if a graph is

of KLX ≤ 𝑘 using Courcelle’s Theorem
• A proof of NP-hardness for a restricted class of graphs

Challenges The biggest challenge I faced was the unknown of the KLX number. DFS are far from intuitive,
as some counter examples can show. It’s a deeply non-local mesure that’s the basis for the KLX number.
It’s very hard to find good upper bounds as building a DFS from a mesurement that has nothing to do with
DFS is very complicated. But once an idea was found, putting it into writing wasn’t as hard as it could have
been. To this day, I have no idea if an approximation algorithm is possible or not.

8.1. The work environment
The lab ambiance was exeptionally good. We spent multiple evening with the other students and my
reasearch advisor in different restaurants. Mr Seki also brought me to a trip to Akita University to work in
a group of other researchers on open problems in RNA-sequencing, and to present some of my results. A
good ambiance allowed me to feel welcome and even help the other students by teaching them about graph
theory, computability and langage theory. The university also had a club for international students that I
joined and was a part of every friday evening.

19/24

Bibliography
[1] S. Seki, A. Elonen, and P. Orponen, “Secondary Structure Design for Cotranscriptional 3D RNA

Origami Wireframes,” 31st International Conference on DNA Computing and Molecular Programming
(DNA31), 2025.

[2] A. Elonen et al., “Algorithmic Design of 3D Wireframe RNA Polyhedra,” ACS Nano, vol. 16, no. 10, pp.
16608–16616, 2022, doi: 10.1021/acsnano.2c06035.

[3] C. W. Geary and E. S. Andersen, “Design Principles for Single-Stranded RNA Origami Structures,”
in DNA Computing and Molecular Programming, S. Murata and S. Kobayashi, Eds., Cham: Springer
International Publishing, 2014, pp. 1–19.

[4] A. Mohammed, P. Orponen, and S. Pai, “Algorithmic Design of Cotranscriptionally Folding 2D RNA
Origami Structures,” in Unconventional Computation and Natural Computation, S. Stepney and S.
Verlan, Eds., Cham: Springer International Publishing, 2018, pp. 159–172.

[5] H. L. Bodlaender, “Approximation Algorithms for Treewidth, Pathwidth, and Treedepth—A Short
Survey,” in Graph-Theoretic Concepts in Computer Science, D. Kráľ and M. Milanič, Eds., Cham: Springer
Nature Switzerland, 2025, pp. 3–18.

[6] B. Courcelle, “The monadic second-order logic of graphs. I. Recognizable sets of finite graphs,”
Information and Computation, vol. 85, no. 1, pp. 12–75, 1990, doi: https://doi.org/10.1016/0890-5401(90)
90043-H.

[7] E. Korach and N. Solel, “Tree-width, path-width, and cutwidth,” Discrete Applied Mathematics, vol. 43,
no. 1, pp. 97–101, 1993, doi: https://doi.org/10.1016/0166-218X(93)90171-J.

[8] B. Courcelle and J. Engelfriet, Graph Structure and Monadic Second-Order Logic, Encyclopedia of
Mathematics and Its Application 138. Cambridge.

[9] T. Akiyama, T. Nishizeki, and N. Saito, “NP-completeness of the Hamiltonian cycle problem for
bipartite graphs,” J. Inform. Process., vol. 3, no. 2, pp. 73–76, 1980.

[10] E. Sam, M. Fellows, F. Rosamond, and P. A. Golovach, “On the Parameterized Complexity of the
Structure of Lineal Topologies (Depth-First Spanning Trees) of Finite Graphs: The Number of Leaves,”
in Algorithms and Complexity, M. Mavronicolas, Ed., Cham: Springer International Publishing, 2023,
pp. 353–367.

20/24

https://doi.org/10.1021/acsnano.2c06035
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/https://doi.org/10.1016/0166-218X(93)90171-J

9. Annexes

9.1. KLX≤𝑖 is MSO2-expressible
In this section, let 𝑘 ∈ ℕ be the KLX number we want to test. Given a tree 𝑇 = (𝑉 , 𝑇𝐸) of 𝐺 = (𝑉 , 𝐸), we
will note 𝑇𝐸 = Compl𝐸(𝑇𝐸) the complement of 𝑇𝐸 in 𝐸 (and not in 𝑉 2). We will for ease of use use 𝑝(𝑥)
as a functional symbol in our formulas to denote the parent of 𝑥, knowing that 𝑅(𝑝(𝑥)) can be replaced by
∃𝑡, Parent(𝑥, 𝑡) ∧ 𝑅(𝑡).

Important notion The DFS alone is not enough to characterize a KLX DFS walk: the order of the visit of
the children of node can change the value of the KLX.

Given a rooted DFS tree 𝑇 of 𝐺 = (𝑉 , 𝐸), we create 𝑘 sets of edges/nodes 𝐸1, …, 𝐸𝑘 and for every node
𝑢 ∈ 𝑉 and every 𝑖 such than 𝑢 ∈ 𝐸𝑖 we choose two specific neighbors of 𝑢 (called 𝑢1

𝑖 and 𝑢2
𝑖). All choices

must respect that:
• R1 For every node 𝑢 ∈ 𝑉 , there is no cycle of the form 𝑢2

𝑖1
= 𝑢1

𝑖2
, 𝑢2

𝑖2
= 𝑢1

𝑖3
, …, 𝑢2

𝑖𝑝
= 𝑢1

𝑖1
 with all 𝑖1, …, 𝑖𝑝

different
• R2 For every node 𝑢 ∈ 𝑉 , there is only two nodes that appears once in the list of all chosen neighbors

(over all possible i), one of those is the parent of 𝑢, and all other appears twice
• R3 Every edge (𝑢, 𝑣) ∉ 𝑇𝐸 is in exactly one 𝐸𝑖

Claim Due to R1 and R2, for every 𝑢 ∈ 𝑉 there is a unique way to order all chosen neighbors of the form
𝑝(𝑢) = 𝑢1

𝑖1
, 𝑢2

𝑖1
= 𝑢1

𝑖2
, …, 𝑢2

𝑖𝑝−1
= 𝑢1

𝑖𝑝
. We will note by (𝑖1, …, 𝑖𝑝) this ordering of the labeled neighbors of

𝑢.

For (𝑢, 𝑣) ∉ 𝑇𝐸 define 𝑋𝑢,𝑣 the set inner edges and nodes of the open edge (𝑢, 𝑣) as the smallest set
respecting:
• X1 The path from 𝑢 to 𝑣 is in 𝑋𝑢,𝑣
• X2 For every 𝑢 strictly in the path, we have 𝑢2

𝑖 in the path implies that for every 𝑗 strictly before 𝑖 in the
ordering of node 𝑢, we have the full sub-tree of child 𝑢2

𝑗 in 𝑋𝑢,𝑣

Finally, all must respect the following conditions:
• R4 For all (𝑢, 𝑣) ∈ 𝑇𝐸 , we have (𝑢, 𝑣) ∈ 𝐸𝑖 iff there exists (𝑥, 𝑦) ∉ 𝑇𝐸 such than (𝑢, 𝑣) ∈ 𝑋𝑥,𝑦 and

(𝑥, 𝑦) ∈ 𝐸𝑖
• R5 For all (𝑢, 𝑣), (𝑢′, 𝑣′) ∉ 𝑇𝐸 , if (𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐸𝑖 then 𝑋𝑢,𝑣 ∩ 𝑋𝑢′,𝑣′ = ∅

Proof of Claim Let 𝑢 be a node, and consider the graph 𝐺𝑢 = (𝑉𝑢, 𝐸𝑢) with 𝑉𝑢 all chosen neighbors of 𝑢
and 𝐸 the set of edges of the form {𝑢1

𝑖 , 𝑢2
𝑖 }. Then R2 directly describe that for all nodes expect two, the

degree is two, meaning 𝐺𝑢 is a disjoint union of cycles and a path with an endpoint being 𝑝(𝑢). Rule R1
impose the graph to not have any cycle, making it a single long path with 𝑝(𝑢) as an endpoint.

Intuition The idea is that for every open edge (𝑢, 𝑣) ∈ 𝐸 \ 𝑇𝐸 , we have have all moments (edges and node
expect endpoint 𝑢, 𝑣) in which the edge is open (described by 𝑋𝑢,𝑣) contain in the same set 𝐸𝑖. Since a DFS
KLX walk is intransigeantly ordered, and the order will change the KLX number, the chosen nodes is here
to make sure that all 𝐸𝑖 are consistent with the order of visit. And due to the following remark we can
bound the “useful” order by 𝑘, making it MSO-definable:

Remark Consider a KLX DFS walk and a node 𝑥 ∈ 𝑉 . For every open edge (𝑢, 𝑣) (with 𝑢 > 𝑣), either it
will not be open upon meeting with the node (if 𝑥 > 𝑢 or 𝑣 > 𝑥), will close as soon as coming back from
the node (𝑢 = 𝑥), or will always be open (𝑢 > 𝑥 ≥ 𝑣).

Lemma (Correction of X1, X2) For every (𝑎, 𝑏) ∈ 𝑇𝐸 , for all (𝑢, 𝑣) ∈ 𝑇𝐸 , we have (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏 iff (𝑎, 𝑏)
is open upon the 𝑢 → 𝑣 transition of the DFS.

Proof of lemma

21/24

Take (𝑣𝑖)𝑖 the DFS and (𝑎, 𝑏) ∈ 𝑇𝐸 . Take 𝑖 = ⌈𝑎⌉ the last position of 𝑎 in the DFS and 𝑗 = ⌊𝑏⌋≥𝑖 the first
position of 𝑏 greater than 𝑖: they delimit by definition the moments where the edge (𝑎, 𝑏) is open. Let’s
show that 𝑋𝑎,𝑏 = {(𝑣𝑘, 𝑣𝑘+1) : 𝑖 ≤ 𝑘 ≤ 𝑗 − 1}. By definition of a DFS, we have that ⌈𝑡⌉ is the position of
the transition (𝑡, 𝑝(𝑡)) in the DFS.

⇒ Take (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏. Then, we have two cases :
• If (𝑢, 𝑣) is in the path from 𝑎 to 𝑏, we have 𝑖 ≤ ⌈𝑢⌉ < ⌈𝑢⌉ + 1 ≤ 𝑗.
• Suppose that (𝑢, 𝑣) is in a sub-tree of a inner node 𝑤 of the path. Then the lowest common parent of 𝑎

and 𝑢 is 𝑤, and because the tree is a DFS, we explore every children of 𝑤 before going back, so ⌈𝑢⌉ <
⌈𝑝(𝑤)⌉ ≤ 𝑗 and this conclude this case.

⇐ Take a (𝑢, 𝑣 = 𝑝(𝑢)) of position 𝑡, 𝑡 + 1 in the DFS, with 𝑖 ≤ 𝑡 ≤ 𝑗. Then ⌈𝑢⌉ = 𝑡. Take 𝑝 the lowest
common ancestor of 𝑢 and 𝑎. Since both 𝑢 ≤ 𝑏 and 𝑎 ≤ 𝑏 we have 𝑝 ≤ 𝑏. We have two cases:

• if 𝑝 = 𝑢, then 𝑢 is in the path as 𝑎 ≤ 𝑝 = 𝑢 ≤ 𝑏, so by X1 we have (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏
• Otherwise, both 𝑎, 𝑏 ≤ 𝑝 ≤ 𝑏. Since we have 𝑖 ≤ ⌈𝑢⌉ ≤ ⌈𝑝⌉, 𝑎 is visited before 𝑢. Since there is an open

edge (𝑎, 𝑏), we conclude that both the child going to 𝑎 and every later child are order in the DFS (and
have a 𝑝2

𝑖 associated) and therefore by X2 we have (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏. For this case it’s not possible that 𝑏 =
𝑝, as otherwise ⌈𝑢⌉ ≤ ⌊𝑏⌋≥𝑎 ≤ ⌊𝑢⌋≥𝑎 (a contradiction)

Corollary Given a DFS, the set 𝑋𝑎,𝑏 is unique.

Prop Given a a graph and 𝑇 a DFS tree of G, we have KLX(𝐺) ≤ 𝑘 iff there exists 𝑘 sets 𝐸1, …, 𝐸𝑘 and a
choice of nodes as described above following all described rules.

Proof Both implication:

⇒ Let 𝐺 be a graph of KLX(𝐺) ≤ 𝑘, and take 𝑇 the DFS tree. Take (𝑣𝑖)𝑖 the DFS walk. We will define the
edge set (𝐸𝑖)𝑖≤𝑘 with the induction hypothesis that |{(𝑎, 𝑏) ∈ 𝐸𝑖}| is the KLX number on the time of the
transition of the edge (𝑎, 𝑏) in the DFS:
• Initially, ∀𝑖, 𝐸𝑖 = ∅
• For a given transition of the DFS (𝑥, 𝑝(𝑥)), for all backward edge of the form (𝑥, 𝑡), there is a 𝑗 ≤ 𝑘

such than (𝑥, 𝑝(𝑥)) ∉ 𝐸𝑗 (otherwise we would have more than 𝑘 open edges at the same time). Add the
moments where (𝑥, 𝑡) is open in 𝐸𝑗 (by the lemma, those are 𝑋𝑥,𝑡), and add (𝑥, 𝑡) ∈ 𝐸𝑗.

Now to define the ordering. Given a node 𝑢 ∈ 𝑉 , there is at maximum 𝑘 open edges during the transition
(𝑢, 𝑝(𝑢)) in the DFS. Take the reverse order of thoses children and encode it in 𝑢 as per the claim.

Let’s verify that 𝐸1, …, 𝐸𝑘 and the labeling verify R1 to R5 :
• R1 and R2 are by definition, and because of the claim
• R3 By definition, for every backward edge (𝑢, 𝑣), we added it in a edge set when considering the (𝑢, 𝑝(𝑢))

transition in the DFS
• R4 For a given backward edge (𝑎, 𝑏), we only add in the 𝐸𝑖 ∩ 𝑇𝐸 set the edges in where (𝑎, 𝑏) is open.

Because we only add an edge in that case and start with the empty set for 𝐸𝑖, by induction, those are the
only ones who persists.

• R5 By contradiction, given two backward edges (𝑢, 𝑣) and (𝑢′, 𝑣′), suppose that 𝑋𝑢,𝑣 ∩ 𝑋𝑢′,𝑣′ ≠ ∅. Then
there is an edge (𝑎, 𝑏) that have been added twice in a set 𝐸𝑖. Suppose that (𝑢, 𝑣) appears before (𝑢′, 𝑣′)
in the DFS (the other way being the same reasoning). Then when considering the set (𝑢′, 𝑣′), we have
(𝑢′, 𝑝(𝑢′)) ∉ 𝐸𝑖 as this is the necessary condition for it to be added in the 𝐸𝑖 set. But because of the
lemma, we know that 𝑋𝑎,𝑏 represent a continuous interval of the DFS walk, so (𝑎, 𝑏) can’t be in 𝑋𝑢,𝑣 as
it comes after (𝑢′, 𝑝(𝑢′)), a contradiction.

⇐ Supposing the existence of all set following the rules described, we will show that there exists a KLX
DFS walk such that for all transition (𝑢, 𝑣) in the KLX DFS walk, the number of open edges at this point
is bounded by 𝑘. For this, since we already have the DFS tree, we just need to indicate the order of visit

22/24

of every child of a node. Given a node 𝑢, note 𝑐1, …, 𝑐𝑝 the sub-tree of child 𝑖1, …, 𝑖𝑝 respectively (with
𝑖1, …, 𝑖𝑝 the order stored at node 𝑢 that is well defined by rule R1 and R2 according to Claim 1). We define
the DFS KLX order of 𝑢 as going first to every sub-tree of 𝑢 that isn’t in {𝑐1, …, 𝑐𝑝} (in whatever order)
before going to the sub-trees 𝑐𝑝, 𝑐𝑝−1, …, 𝑐1 in that order.

Finally, to show our bound, we will show that for every transition (𝑢, 𝑣) in the DFS, we have |𝒪{𝑢,𝑣}| =
|{𝑖 : (𝑢, 𝑣) ∈ 𝐸𝑖}| ≤ 𝑘 (read ≡

card
 as “have the same cardinal”):

𝒪{𝑢,𝑣} ≡
card

{(𝑎, 𝑏) ∈ 𝑇𝐸 | (𝑢, 𝑣) ∈ moments where (𝑎, 𝑏) is open}

≡
card

{(𝑎, 𝑏) ∈ 𝑇𝐸 | (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏} By Lemma

≡
card

{(𝑎, 𝑏) ∈ 𝑇𝐸 | ∃𝑖, (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏 ∧ (𝑢, 𝑣) ∈ 𝐸𝑖} By R3

≡
card

{(𝑎, 𝑏, 𝑖) ∈ 𝑇𝐸 | (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏 ∧ (𝑢, 𝑣) ∈ 𝐸𝑖}

≡
card

{𝑖 | ∃(𝑎, 𝑏) ∈ 𝑇𝐸 ∧ (𝑢, 𝑣) ∈ 𝑋𝑎,𝑏 ∧ (𝑢, 𝑣) ∈ 𝐸𝑖} By R5

≡
card

{𝑖 | (𝑢, 𝑣) ∈ 𝐸𝑖} By R4

Theorem KLX𝑘 that accepts only graphs of KLX ≤ 𝑘 is MSO-definable.

Proof We need to find a way to encode the choice of nodes as sets of edges/nodes. Let 𝑢 ∈ 𝑉 be a node,
because the size of the ordering is bounded by 𝑘 (can’t have more than 𝑘 open edges when taking (𝑢, 𝑝(𝑢))),
we can store the two nodes 𝑢1

𝑖 and 𝑢1
𝑖 in a set called 𝑂𝑢

𝑖 . Since we can’t have an unbounded number of sets
(they are all quantified) we need to share nodes in-between 𝑂𝑢

𝑖 . To avoid ambiguity, for every 𝑖 we create
𝑂0

𝑖 , 𝑂1
𝑖 and 𝑂2

𝑖 for node of a depth of respectively 0, 1 or 2 mod 3.

For a node 𝑢 at a depth mod 3 of 𝑥, we therefore have {𝑢1
𝑖 , 𝑢2

𝑖 } = 𝑂𝑥
𝑖 ∩ 𝑁(𝑢) with 𝑁(𝑢) the set of neighbors

of 𝑢. We must therefore have the condition that for every node 𝑢 of depth 𝑥 mod 3, |𝑂𝑥
𝑖 ∩ 𝑁(𝑢)| = 2

We use 𝜑1, 𝜑2, 𝜑3, 𝜓1, 𝜓2, 𝜑4, 𝜑5 that each check respectively of R1, R2, R3, X1, X2, R4, R5. DEPTH𝑥(𝑢)
test is the depth of 𝑢 is 𝑥 mod 3. 𝛾 test that 𝑂0

1 , 𝑂1
1 , …, 𝑂2

𝑘 encode the choice. SEL𝑖(𝑢, 𝑢1, 𝑢2) is true iff 𝑢1

and 𝑢2 are the two nodes chosen for 𝑢 and 𝑖. That gives us the following formulas:

23/24

KLX≤𝑘 ≔ ∃𝑇 , ∃𝑟, ∃𝑋, DFS(𝑇 , 𝑟, 𝑋) ∧ (∃𝐸1, …, ∃𝐸𝑘, ∃𝑂0
1 , ∃𝑂0

1 , …, ∃𝑂2
𝑘 , 𝛾 ∧ 𝜑1 ∧ 𝜑2 ∧ 𝜑3 ∧ 𝜑4)

DEPTH𝑥(𝑢) ≔ ∃𝐴0, ∃𝐴1, ∃𝐴2, 𝑟 ∈ 𝐴0 ∩ 𝐴1 ∩ 𝐴2 ∧
(
((∀𝑣 ∈ 𝑉 , ⋀

𝑖∈{0,1,2}
𝑝(𝑣) ∈ 𝐴𝑖 ↔ 𝑣 ∈ 𝐴(𝑖+1) mod 3

)
)) ∧ 𝑢 ∈ 𝐴𝑥

𝛾 ≔ ∀𝑢, ⋀
𝑥∈{0,1,2}

1≤𝑖≤𝑘

DEPTH𝑥(𝑢) →

(∃𝑢1, 𝑢2 ∈ 𝑂𝑥
𝑖 , (𝑢, 𝑢1), (𝑢, 𝑢2) ∈ 𝐸 ∧ (∀𝑐 ∈ 𝑂𝑥

𝑖 , (𝑢, 𝑐) ∈ 𝐸 ⇒ 𝑐 = 𝑢1 ∨ 𝑐 = 𝑢2))

SEL𝑖(𝑢, 𝑢1, 𝑢2) ≔ ⋀
𝑥∈{0,1,2}

DEPTH𝑥(𝑢) → 𝑢1, 𝑢2 ∈ 𝑂𝑥
𝑖 ∧ (𝑢, 𝑢1), (𝑢, 𝑢2) ∈ 𝐸

𝜑1 ≔ ∀𝑢 ∈ 𝑉 , ¬ ⋀
𝑝<𝑘

1≤𝑖0,…,𝑖𝑝≤𝑘

⋀
0≤𝑗≤𝑝

∃𝑢2, 𝑎, 𝑏 ∈ 𝑉 , SEL𝑖𝑗
(𝑢, 𝑎, 𝑢2) ∧ SEL𝑖𝑗+1 mod 𝑝+1

(𝑢, 𝑢2, 𝑏)

𝜑2 ≔ ∀𝑢, ∃𝑝, 𝑒
IsAPath(𝑃 , 𝑢, 𝑣) ≔ ∃𝑟 ∈ 𝑉 , 𝑢 ∈ 𝑃 ∧ 𝑣 ∈ 𝑃 ∧ (∀𝑘 ∈ 𝑃 , 𝑘 ≠ 𝑟 → 𝑝(𝑘) ∈ 𝑃 ∧ (𝑘, 𝑝(𝑘)) ∈ 𝑃)

IsThePath(𝑃 , 𝑢, 𝑣) ≔ IsAPath(𝑃 , 𝑢, 𝑣) ∧ ∀𝑃 ′, IsAPath(𝑃 ′, 𝑢, 𝑣) → 𝑃 ⊆ 𝑃 ′

IsChildren(𝑎, 𝑏) ≔ ∃𝑃 , IsThePath(𝑃 , 𝑎, 𝑏) ∧ 𝑝(𝑎) ∈ 𝑃 ∧ ∀𝑥, 𝑦 ∈ 𝑃 , 𝑥 ≠ 𝑦 → 𝑝(𝑥) ≠ 𝑝(𝑦)

𝜓1(𝑢, 𝑣, 𝑋𝑢,𝑣) ≔ ∀𝑃, IsThePath(𝑃 , 𝑢, 𝑣) → 𝑃 ⊆ 𝑋𝑢,𝑣

𝜓2(𝑢, 𝑣, 𝑋𝑢,𝑣) ≔ ∀𝑃, IsThePath(𝑃 , 𝑢, 𝑣) → ∀𝑥 ∈ 𝑃 , 𝑥 ≠ 𝑢 ∧ 𝑥 ≠ 𝑣 →

⋀
1≤𝑝≤𝑘

⋀
1≤𝑖1,…,𝑖𝑝≤𝑘

∃𝑢1
1, …, ∃𝑢2

𝑝, (⋀
1≤𝑗≤𝑝

SEL𝑖𝑗
(𝑢, 𝑢1

𝑗 , 𝑢2
𝑗)) ∧ (⋀

1≤𝑗<𝑝
𝑢2

𝑗 = 𝑢1
𝑗+1) ∧ 𝑢1

1 = 𝑝(𝑢) ∧

⋀
1≤𝑗<𝑖≤𝑝

𝑢2
𝑖 ∈ 𝑋𝑎,𝑏 → (∀(𝑣, 𝑣′) ∈ 𝐸, IsChildren(𝑣, 𝑢2

𝑗) → 𝑣 ∈ 𝑋𝑎,𝑏 ∧ (𝑣, 𝑣′) ∈ 𝑋𝑎,𝑏)

IsASet(𝑢, 𝑣, 𝑋𝑢,𝑣) ≔ 𝜓1(𝑢, 𝑣, 𝑋𝑢,𝑣) ∧ 𝜓2(𝑢, 𝑣, 𝑋𝑢,𝑣)

IsTheSet(𝑢, 𝑣, 𝑋𝑢,𝑣) ≔ IsASet(𝑢, 𝑣, 𝑋𝑢,𝑣) ∧ ∀𝑋′, IsASet(𝑢, 𝑣, 𝑋′) → 𝑋 ⊆ 𝑋′

𝜑3 ≔ ∀𝑒 ∈ 𝐸, 𝑒 ∉ 𝑇 ⇒ ⋁
1≤𝑖≤𝑘

𝑒 ∈ 𝐸𝑖 ∧

(
((
((
(

⋀
1≤𝑗≤𝑘

𝑖≠𝑗

𝑒 ∉ 𝐸𝑗

)
))
))
)

𝜑4 ≔ ∀(𝑢, 𝑣) ∈ 𝑇𝐸, ⋀
1≤𝑖≤𝑘

(𝑢, 𝑣) ∈ 𝐸𝑖 ↔

∃(𝑥, 𝑦) ∈ 𝐸, ∃𝑋𝑥,𝑦, IsSet(𝑥, 𝑦, 𝑋𝑥,𝑦) →∉ 𝑇 ∧ (𝑢, 𝑣) ∈ 𝑋𝑥,𝑦 ∧ (𝑥, 𝑦) ∈ 𝐸𝑖

𝜑5 ≔ ∀(𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐸, (𝑢, 𝑣), (𝑢′, 𝑣′) ∉ 𝑇𝐸 → ⋀
1≤𝑖≤𝑘

(𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐸𝑖 →

∃𝑋1, 𝑋2, IsTheSet(𝑢, 𝑣, 𝑋𝑢,𝑣) ∧ IsTheSet(𝑢′, 𝑣′, 𝑋𝑢′,𝑣′) ∧ (∀𝑡, ¬(𝑡 ∈ 𝑋𝑢,𝑣 ∧ 𝑡 ∈ 𝑋𝑢′,𝑣′))

24/24

	Abstract
	Introduction
	Motivation
	Results

	Definitions
	General Graph Theory Definitions
	Tree-width
	MSO2
	KLX

	General Properties of the KLX numbers
	Useful Lemmas
	Characterizations of graphs of KLX=0 and KLX=1
	Counter-Examples of conjectures

	Upper and lower bounds
	TW(G) ≤ KLX(G) +1
	CW(G) ≤ KLX(G) Δ (G)
	KLX(G) ≤ number of touching cycles
	Number of disjoint cycles ≤KLX(G)

	NP Hardness
	Courcelle's theorem for KLX
	DFS(T,G) is MSO2-expressible
	KLXk is MSO2 expressible and Courcelle's theorem

	Conclusions
	The work environment

	Bibliography
	Annexes
	KLX≤ i is MSO2-expressible

